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Abstract

Boosting is a machine learning technique widely used across many disciplines. Boost-
ing enables one to learn from labeled data in order to predict the labels of unlabeled
data. A central property of boosting instrumental to its popularity is its resistance
to overfitting. Previous experiments provide a margin-based explanation for this
resistance to overfitting.

In this thesis, the main finding is that boosting’s resistance to overfitting can be
understood in terms of how it handles noisy (mislabeled) points. Confirming exper-
imental evidence emerged from experiments using the Wisconsin Diagnostic Breast
Cancer(WDBC) dataset commonly used in machine learning experiments. A major-
ity vote ensemble filter identified on average that 2.5% of the points in the dataset
as noisy. The experiments chiefly investigated boosting’s treatment of noisy points
from a volume-based perspective. While the cell volume surrounding noisy points did
not show a significant difference from other points, the decision volume surrounding
noisy points was two to three times less than that of non-noisy points. Additional
findings showed that decision volume not only provides insight into boosting’s resis-
tance to overfitting in the context of noisy points, but also serves as a suitable metric
for identifying which points in a dataset are likely to be mislabeled.

Thesis Supervisor: Patrick H. Winston
Title: Professor
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Chapter 1

Introduction

In this thesis, the main finding is that boosting’s resistance to overfitting can be

understood in terms of how it handles noisy (mislabeled) points. The experiments

were applied to the Wisconsin Diagnostic Breast Cancer(WDBC) dataset commonly

used in machine learning experiments. A majority vote ensemble filter identified on

average that 2.5% of the points in the dataset as noisy. The experiments chiefly

investigated boosting’s treatment of noisy points from a volume-based perspective.

Two chief volume-based metrics are used: cell volume defined as the volume of the

region bounded by the closest base learners (or rules of thumb) to a point and decision

volume defined as the volume of the region bounded by the closest decision boundary

to a point. While the cell volume surrounding noisy points did not show a significant

difference from other points, the decision volume surrounding noisy points was two

to three times less than that of non-noisy points. Additional findings showed that

decision volume not only provides insight into boosting’s resistance to overfitting in

the context of noisy points, but also serves as a suitable metric for identifying which

points in a dataset are likely to be mislabeled.

The field of machine learning uses algorithmic techniques to learn and adapt from

past observations or experience to make predictions accurately. For example, imagine

that we want to give the computer a task of being able to ’read’ scanned images of

handwritten digits. A common machine learning framework for such a problem would

involve gathering as many examples of scanned handwritten numbers as possible of
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every type of digit. Next, feed these examples along with the answer for the machine

learning algorithm to learn and adaptively ’train’ its model. After going through this

training phase, the machine learning algorithm would have formulated a classification

rule that it can follow on new unlabeled examples. The goal of this machine learning

framework is to be able to develop the most accurate rule to classify unseen images

or examples.

Formulating an accurate classification rule is a very difficult problem since com-

puters do not possess the pattern recognition abilities that humans do. However, one

can come up with some basic rules that could improve classification. For example, if

the digit is round and mostly symmetric, then it is likely to be a 0. While this rule

alone does not suffice as a completely accurate classification rule, it slightly improves

our classification rate compared to guessing at random.

The premise behind boosting is that developing the appropriate single prediction

rule in one shot is often harder than finding many simple rules of thumb that classify

a bit better than random. The boosting approach combines many simple rules of

thumb generated from different weightings of the original set of training examples.

Each iteration that the algorithm is called it creates a new simple rule based on the

re-weighted distribution of training examples. Then, the boosting algorithm combines

all of the simple rules (called base learners) and combines them in an overall prediction

rule that should be much more accurate that any individual rule.

In order for this approach to work, there are some technical details that need to

be resolved.

∙ How should the distribution over each dataset be chosen and updated after each

round of boosting?

∙ How exactly do we combine the base learners into a single unified rule?

Commonly techniques in boosting choose the distribution over the training set to

focus the most on the points that are difficult to develop a rule for. That is, weight

the difficult to classify examples highly. For the second question, a natural manner

in which to combine base learners is to simply hold a weighted majority vote for the
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correct label.

Boosting is a popular machine learning technique used in many fields. Boosting

owes its popularity to its resistance to overfitting. Previous experiments provide a

margin-based explanation for this resistance to overfitting.

1.1 Background of Boosting

Boosting can trace its roots back to the Probably Approximately Correct (PAC)

model developed by Valiant [36]. The idea behind the PAC model was that given a

random set of training examples from a specified distribution, a weak PAC learning

algorithm is defined as for any distribution the algorithm can with high probability

find a classifier with a generalization error slightly better than random guessing given

a polynomial number of examples and time. A strong PAC learning algorithm could

find a classifier with an arbitarily small generalization error in a polynomial number

of examples and time. This lead to Kearns and Valiant [19] in 1989 positing whether

weak learnability implied strong learnability and came up with the idea of ‘boosting’

a weak learning algorithm to become a strong one.

This question led to Schapire [28] a year later proving the equivalence of weak and

strong learnability and developing the first provable boosting algorithm that trans-

forms a weak learner into a strong learner by using a recursively defined filtering

strategy that filters the training set so that on each iteration the weak learner only

received a subset of the training data. A year later, Freund [8] developed an opti-

mal boosting algorithm based on the known upper bounds developed by the PAC

framework using a simpler and more efficient algorithm that removes the filtering

strategy and simply takes the majority of the outputs from each weak learner. A

few years later Drucker et al. [6] ran the first experiments on boosting algorithms

in application to optical character recognition data and developed error metrics to

understand the performance of boosting, but found that the boosting algorithm was

limited by practical drawbacks. In 1995, Freund and Schapire [10] developed their

landmark algorithm, Adaboost, which solved many of the practical issues discovered
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by Drucker et al. in earlier boosting algorithms.

1.2 Applications of Boosting

Boosting is one of the most popular machine learning techniques and has been widely

applied throughout many fields. In medicine, Tan et al. [32] utilized boosting methods

for cancer classification on microarray gene expression data, which had the additional

benefit of identifying which genes were important to cancer diagnosis. Biological

applications are not limited to cancer prediction but also extends to the difficult

problem of protein structure prediction in which Niu et al. [24] employed an Adaboost

learner. Guan et al. [15] used boosting in order to discover microRNAs among the

entire genome while Xie et al. [40] employed it in a similar setting to discover DNA

promotors. Furthermore, Middendorf et al.[22] used Adaboost to predict genetic

regulatory response.

In the field of natural language processing, many techniques have been developed

to employ or modify Adaboost in application to classifying text documents as well

as classifying and understanding spoken language [1], [35]. Additional work has been

done in natural language processing to disambiguate word sense using a modified

boosting approach [7].

In robotics, Viola and Jones [38] use boosting in order to rapidly detect objects.

Further work in robotics employed the boosting framework to enable a mobile robot

to detect various places within an environment [23]. In computer vision, boosting has

been used in the methodology of image retrieval [33]

1.3 Understanding of Boosting

With such a diverse set of applications for boosting, it is important to understand

what makes boosting such a popular technique and understand its strengths and

limitations.

Many previous studies have delved into understanding various theoretical aspects
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of boosting. Lugosi et al. [21] showed that certain regularized bosting classifiers are

Bayes- risk consistent. Jiang [17] showed that when boosting is performing subopti-

mally then a near-optimal way of minimizing prediction error and resisting overfitting

is terminating the process early. Rudin et al. [27] analyzed the cylical properties of

AdaBoost and the convergence properties in relation to the boosting margins. Kivinen

and Warmuth [20] examines the choosing of new weights for boosting as an entropy

projection of the distribution of weights on to the distribution of mistakes.

Many studies have also modified boosting to adapt to new settings or contexts.

Bennett et al. [3] developed methodology to extend boosting methodology to the semi-

supervised setting. Friedman [13] developed a method that adds randomization to

gradient boosting which both improves speed and accuracy of the method. Ridgeway

et al. [26] reformulated boosting to the context of regression problems. Freund

and Mason [9] employed alternating decision trees as the base learner for boosting

which achieved competitive performance and gave a natural notion of classification

confidence.

The goal of this thesis is to further the understanding of boosting via a volume-

based approach by developing an understanding for how the weak learners are chosen

to affect noisy points as opposed to non-noisy points. The findings further tie this

approach to our understanding of boosting in a margin sense and how these margins

change with each successive iteration on noisy training examples. An important

component of the analysis centers around the ability to filter noisy data, so the efficacy

of the noise filter techniques in the literature is compared with a noise identification

scheme based on examining the decision volume around each training example and

apply this methodology to real-world datasets for validation.

This paper is organized as follows:

∙ Chapter 2 contains all related work regarding boosting and noise filtering

∙ Chapter 3 describes the methodology and dataset which we will employ

∙ Chapter 4 summarizes the results of the experiments
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∙ Chapter 5 concludes the experiments and delves into the future directions of

this study
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Chapter 2

Related Work

2.1 Boosting

Boosting is a powerful machine learning algorithm founded on the idea that combining

the labels of many ‘weak’ classifiers or learners translates to a strong robust one.

Boosting is a greedy algorithm that fits adaptive models by sequentially adding these

base learners to weighted data where difficult to classify points are weighted more

heavily. Experts claim that boosting is the best off-the-shelf classifier developed so

far.

The goal of boosting is to minimize

min
ℎ

𝑛∑︁
𝑖=1

Loss(𝑦𝑖, ℎ(𝑥𝑖))

in a stagewise manner where many different loss functions can be used. At each

iteration, the goal of minimizing the above problem is approached in a stagewise

manner where a new classifier is added each time. Since the previous parameters

cannot be changed, we call this approach forward stagewise additive modeling. The

primary tuning parameter in forward stagewise additive modeling is the number of

iterations. This parameter can be tuned via a validation set where the parameter

can be chosen to be the point where the performance begins to decrease called early

stopping. Alternative parameters such as AIC or BIC can also be used. Another
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technique for achieving better generalization performance is to enforce a learning

rate on each update making the first few iterations more ‘important’ than the last

few. This technique is typically referred to as shrinkage.

In binary classification problems, it is natural to use 0-1 loss; however, since 0-1

loss is not differentiable different boosting techniques may use logloss or exponential

loss as a convex upper bound for 0-1 loss.

2.1.1 Discrete Adaboost

The most popular boosting algorithm, Adaboost, was developed by Freund and

Schapire (1997) [10] solving many of the practical drawbacks of earlier boosting meth-

ods utilizing an exponential loss function. The Adaboost algorithm takes a training

dataset 𝑆𝑛 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2) · · · (𝑥𝑛, 𝑦𝑛)} as input with binary labels 𝑌 = {−1,+1}

(although it can be extended to the multiclass case which we will cover in a later

section). Adaboost iteratively calls a series of base learners in a series of rounds

𝑡 = 1 · · ·𝑇 . Each new base learner ℎ(𝑥; 𝜃𝑡) improves upon the overall classification

of the ‘committee’ of base learners by weighting the 𝑖th training examples for round

𝑡 denoted by 𝑊𝑡(𝑖). The weights are determined based on the classification perfor-

mance of the ensemble of classifiers in previous iterations. If the classifier misclassifies

a training example, then the weight of the the training example increases. Thus, the

subsequent base learners focus on the examples that are hard to classify. After a base

learner is chosen, Adaboost chooses an importance weight 𝛼𝑡 for the classifier based

on the error of the chosen classifier on the weighted training set. Thus, as the error

of iteration 𝑡, 𝜖𝑡 increases, then the importance weight 𝛼𝑡 decreases. Note that 𝛼𝑡

cannot be updated in subsequent rounds but can only be changed by choosing the

same learner in a later boosting round. Thus, we do not require that they sum to

1 and can simply normalize them later on. The final hypothesis resulting from the

Adaboost algorithm is a weighted majority vote by the committee of base learners.
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The final ensemble 𝐻𝑇 (𝑥) can be written as

𝐻𝑇 (𝑥) =
𝑇∑︁
𝑡=1

𝛼𝑡ℎ(𝑥; 𝜃𝑡)

where ℎ(𝑥; 𝜃𝑡) is the base learner in boosting round 𝑡 with parameters 𝜃𝑡.

Adaboost in particular trains its ensemble classifier based on an exponential loss

function

Loss(𝑦, ℎ(𝑥)) = exp(−𝑦ℎ(𝑥))

where ℎ is the classifier. The primary advantage of the exponential loss function is

computational in its simplicity. We choose the values of 𝛼𝑡, 𝜃𝑡 by minimizing the loss

function.

𝐽(𝛼𝑡, 𝜃𝑡) =
𝑛∑︁

𝑖=1

Loss(𝑦𝑖, 𝐻𝑡(𝑥𝑖))

=
𝑛∑︁

𝑖=1

exp(−𝑦𝑖𝐻𝑚−1(𝑥𝑖) − 𝑦𝑖𝛼𝑡ℎ(𝑥𝑖; 𝜃))

=
𝑛∑︁

𝑖=1

exp(−𝑦𝑖𝐻𝑚−1(𝑥𝑖)) exp(−𝑦𝑖𝛼𝑡ℎ(𝑥𝑖; 𝜃))

=
𝑛∑︁

𝑖=1

𝑊𝑡−1(𝑖) exp(−𝑦𝑖𝛼𝑡ℎ(𝑥𝑖; 𝜃))

Splitting the loss function into classified and misclassified points yields

𝐽(𝛼𝑡, 𝜃𝑡) = 𝑒−𝛼𝑡
∑︁

𝑦𝑖=ℎ(𝑥𝑖;𝜃)

𝑊𝑡−1(𝑖) + 𝑒𝛼𝑡
∑︁

𝑦𝑖 ̸=ℎ(𝑥𝑖;𝜃)

𝑊𝑡−1(𝑖)

= (𝑒𝛼𝑡 − 𝑒−𝛼𝑡)
𝑛∑︁

𝑖=1

𝑊𝑡−1(𝑖)I(𝑦𝑖 ̸= ℎ(𝑥𝑖; 𝜃)) + 𝑒−𝛼𝑡

𝑛∑︁
𝑖=1

𝑊𝑡−1(𝑖)

Thus, the optimal base learner ℎ(𝑥𝑖; 𝜃𝑡) is the base learner that minimizes the weighted
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training error written as

ℎ(𝑥𝑖; 𝜃𝑡) = arg min
ℎ(𝑥𝑖;𝜃)

𝑊𝑡−1(𝑖)I(𝑦𝑖 ̸= ℎ(𝑥𝑖; 𝜃))

The appropriate importance weight can be found by differentiating the loss function

to get
𝜕

𝜕𝛼𝑡

𝐽(𝛼𝑡, 𝜃𝑡) = −
𝑛∑︁

𝑖=1

𝑊𝑡−1(𝑖)𝑦𝑖ℎ(𝑥𝑖; 𝜃𝑡)

Note that since this derivative is negative, we can expect the training loss to decrease

by adding our new base learner. Now that we have all of the necessary components

for the Adaboost algorithm, we can now explicitly define the steps.

We will only examine Discrete Adaboost which uses decision stumps ℎ(𝑥; 𝜃) =

𝑠𝑖𝑔𝑛(𝜃𝑡𝑥 + 𝜃𝑡) as base learner (though there are other versions that use real-valued

classifiers such as in Real Adaboost). Often it has been found that classification trees

make good base learners. Note that decision stumps are special cases of a classification

tree with depth 1.

2.1.2 Understanding Adaboost Error

We describe the weighted training error 𝜖𝑡 as the weighted error of the 𝑡th base

learner with respect to the weights 𝑊𝑡−1(𝑖) on the training set. We can also measure

the performance of the classifier on the next iteration by taking its error with respect

to 𝑊𝑡(𝑖).

Weighted Training Error

The weighted training error 𝜖𝑡 with respect to 𝑊𝑡−1(𝑖) increases as more boosting

iterations occur although it does not do so in a monotonic fashion as shown in Figure

2-1. This matches our intuition since the weights increase for difficult to classify points

making the weighted training error more difficult to minimize for each subsequent base

learner.
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Algorithm 1 Discrete Adaboost (or Adaboost.M1)

1. Set 𝑊0(𝑖) = 1
𝑛

for 𝑖 = 1, 2, · · ·𝑛

2. At stage 𝑡, find a base learner (a decision stump) ℎ(𝑥; 𝜃𝑡) = 𝑠𝑖𝑔𝑛(𝜃1,𝑡𝑥 + 𝜃0,𝑡)
that minimizes

−
𝑛∑︁

𝑖=1

𝑊𝑡−1(𝑖)𝑦𝑖ℎ(𝑥𝑖; 𝜃𝑡) = 2𝜖𝑖 − 1

where 𝜖𝑖 is the weighted zero-one loss error on the training examples. The
weights are the normalized by the weights from the previous boosting stage
𝑊𝑡−1(𝑖).

3. Given a stump, set the importance weight to

𝛼𝑡 = 0.5 log

(︂
1 − 𝜖𝑡
𝜖𝑡

)︂
where 𝜖𝑡 is the weighted error computed above. 𝛼𝑡 is chosen such that it mini-
mizes the weighted exponential training loss

𝐽(𝛼𝑡, 𝜃𝑡) =
𝑛∑︁

𝑖=1

𝑊𝑡−1(𝑖) exp(−𝑦𝑖𝛼𝑡ℎ(𝑥𝑖; 𝜃𝑡))

4. Update the weights on the training example with the new weights.

𝑊𝑡(𝑖) =
1

𝑍
𝑊𝑡−1(𝑖) exp(−𝑦𝑖𝛼𝑡ℎ(𝑥𝑖; 𝜃𝑡))

where 𝑍 is the normalization constant to ensure that the weights sum to 1.
The weights 𝑊𝑡(𝑖) can be seen as the normalized loss of the ensemble 𝐻𝑡(𝑥𝑖) on
training example 𝑖.
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Figure 2-1: Weighted training error 𝜖𝑡 for the boosting algorithm on an artificial
dataset.

Weighted Training Error on Updated Weights

The weighted training error with updated weights 𝑊𝑡(𝑖) is exactly 0.5 (equivalent to

random guessing). We will show this by optimizing for 𝛼𝑡 given 𝜃𝑡

𝐽(𝛼𝑡, 𝜃𝑡) =
𝑛∑︁

𝑖=1

𝑊𝑡−1(𝑖) exp(𝑦𝑖𝛼𝑡ℎ(𝑥𝑖; 𝜃𝑡))

𝑑

𝑑𝛼𝑡

𝐽(𝛼𝑡, 𝜃𝑡)
⃒⃒⃒
𝛼𝑡=�̂�𝑡

= −
𝑛∑︁

𝑖=1

𝑊𝑡−1(𝑖) exp(𝑦𝑖𝛼𝑡ℎ(𝑥𝑖; 𝜃𝑡))(𝑦𝑖ℎ(𝑥𝑖; 𝜃𝑡))

Thus, we have
𝑛∑︁

𝑖=1

𝑊𝑡−1(𝑖)𝑦𝑖ℎ(𝑥𝑖; 𝜃𝑡) = 0

implying that the weighted agreement of the predicted and true label on the updated

weights is 0 (this is equivalent to random guessing). This property has strong im-

plications as it implies that the base learner from the 𝑡th boosting iteration will be

useless for the next iteration. This prevents the same base learner from being chosen

two iterations in a row. This makes sense as if you had the same base learner twice
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in a row, this is equivalent to choosing it once while summing their 𝛼 weights. This

property ensures that weights are assigned efficiently. However, the same learner can

appear in the future with respect to different weights since we nver have a chance to

go back and update previous 𝛼𝑡’s, so in order to tune them, we have to include the

learner in a future iteration.

Ensemble Training Error

Now that we have examined how the error varies from iteration to iteration, it is

important to understand how the error of the entire ensemble behaves. The ensemble

training error does not decrease monotonically with each boosting iteration. However,

the exponential loss function which Adaboost chooses weights and base learners to

sequentially optimize for does decrease monotonically with each boosting iteration.

We can compute exactly how much the exponential loss decreases on each successive

iteration.

𝐽(�̂�𝑡, 𝜃𝑡) =
𝑛∑︁

𝑖=1

𝑊𝑡−1(𝑖) exp(𝑦𝑖�̂�𝑡ℎ(𝑥𝑖; 𝜃𝑡))

=
∑︁

𝑖:𝑦=ℎ(𝑥𝑖;𝜃𝑡)

𝑊𝑡−1(𝑖) exp(−�̂�𝑡) +
∑︁

𝑖:𝑦 ̸=ℎ(𝑥𝑖;𝜃𝑡)

𝑊𝑡−1(𝑖) exp(�̂�𝑡)

= (1 − 𝜖𝑡) exp(−�̂�𝑡) + 𝜖𝑡 exp(�̂�𝑡)

= (1 − 𝜖𝑡)

√︂
𝜖𝑡

1 − 𝜖𝑡
+ 𝜖𝑡

√︂
1 − 𝜖𝑡
𝜖𝑡

= 2
√︀

𝜖𝑡(1 − 𝜖𝑡)

Notice that the above expression 𝐽(�̂�𝑡, 𝜃𝑡) is equivalent to the amount that we

renormalize the weights by and also the amount that the exponential loss decreases

on each iteration. When 𝜖𝑡 < 1/2, then this value is < 1, so the exponential loss is

ensured to decrease by a factor of 2
√︀

𝜖𝑡(1 − 𝜖𝑡). Thus, the overall ensemble training

error for exponential loss 𝐸𝑟𝑟𝑛(𝐻𝑡) after 𝑡 iterations is simply a product of these

normalization constants
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Figure 2-2: Ensemble training error with exponential upper bound for the boosting
algorithm on an artificial dataset

𝐸𝑟𝑟𝑛(𝐻𝑡) =
1

𝑛

𝑛∑︁
𝑖=1

exp(𝑦𝑖𝐻𝑡(𝑥𝑖)) =
𝑡∏︁

𝑘=1

2
√︀
𝜖𝑘(1 − 𝜖𝑘)

Since the zero-one loss in computing ensemble training error is upper bounded

by our exponential loss definition, then the ensemble training error is guaranteed to

decrease the more iterations that occur. A plot of the ensemble training error (blue)

and the exponential loss upper bound (red) can be seen in Figure 2-2

Ensemble Testing Error

A popular method for understanding ensemble testing error is to examine it in the

sense of margins similar to what is done for Suppert Vector Machines (SVMs). This

treatment of ensemble testing error is very important and we provide a more detailed

treatment of the topic in the next section. The two notable properties that make

boosting very powerful is that the testing error continues to decrease once the training

error is zero and the testing error does not increase after a large number of iterations

(ie it is resistant to overfitting). This is shown in Figure 2-3. The first property can

be explained via a margin argument. The second property regarding resistance to

overfitting is a result of the fact that the complexity of boosting does not increase

very quickly with the addition of more iterations. In addition, another reason why

24



Figure 2-3: Training error(blue) vs Testing error(red) of the boosting algorithm on
an artificial dataset

boosting is resistant to overfitting is that since it sequentially optimizes for exponential

loss rather than jointly optimizing and updating 𝛼’s, it is not very effective, so it is

much harder to overfit.

2.1.3 Multiclass Classification

Boosting has commonly been used in the two-class case. Common approaches for

extending boosting to the multi-class classification problem is to reduce it to a series

of two-class classification problems. In the case of Adaboost, a natural extension to

the multiclass problem developed by Schapire and Freund [10] based on pseudo-loss.

However, this extension of the binary problem has some drawbacks. The impor-

tance weight 𝛼 requires each error 𝜖 to be less than half with respect to the distribution

it was trained on in order for the classifier to be properly boosted. Otherwise, the

importance weight 𝛼𝑡 will be negative. In the case of binary classification, this stip-

ulation just requires the classifier to perform better than random guessing which is

usually satisfied. However, when extending to the multiclass case, the random guess-

ing rate is 1/𝐾, but the classifier still must perform better than 1/2 to avoid negative

weights, which is much harder for a base learner to satisfy.
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Algorithm 2 Multiclass Adaboost

1. Initialize the weights to be uniform across all 𝑘 − 1 incorrect labels

𝑊0(𝑖, 𝑙) = I(𝑙 ̸= 𝑦𝑖)/𝑛(𝑘 − 1)

2. For each boosting stage 𝑡, find a base learner (a decision stump) ℎ(𝑥; 𝜃𝑡) that
minimizes the pseudoloss using our weights 𝑊

3. Let

𝜖𝑡 =
1

2

𝑛∑︁
𝑖=1

𝑘∑︁
𝑙=1

𝐷𝑡(𝑖, 𝑙)(I(𝑦𝑖 ̸= ℎ𝑡(𝑥𝑖)) + I(𝑙 = ℎ𝑡(𝑥𝑖)))

4. Assign the weight

𝛼 =
1

2
log(

1 − 𝜖𝑡
𝜖𝑡

)

5. Update the weights

𝑊𝑡+1(𝑖, 𝑙) = 𝑊𝑡(𝑖, 𝑙) exp(𝛼𝑡[I(𝑦𝑖 ̸= ℎ𝑡(𝑥𝑖)) + I(𝑙 = ℎ𝑡(𝑥𝑖))])

6. Normalize the new weights

7. The final classifier is

𝐻(𝑥) = arg max
𝑙∈𝑌

𝑇∑︁
𝑡=1

𝛼𝑡I(𝑙 ∈ ℎ𝑡(𝑥))
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Zhu et al [41] modified the importance update step in an algorithm called Stage-

wise Additive Modeling using a Multi-Class Exponential loss (SAMME) and provided

theoretical guarantees on the new algorithm. The modification simply tacks on a

log(𝐾 − 1) term. Note in their algorithm, once again the error simply only needs to

be better than the random guessing rate 1
𝐾

.

Algorithm 3 SAMME

1. Initialize the weights to be uniform across all 𝑘 − 1 incorrect labels

𝑊0(𝑖, 𝑙) = I(𝑙 ̸= 𝑦𝑖)/𝑛(𝑘 − 1)

2. For each boosting stage 𝑡, find a base learner (a decision stump) ℎ(𝑥; 𝜃𝑡) that
minimizes the pseudoloss using our weights 𝑊

3. Let

𝜖𝑡 =
1

2

𝑛∑︁
𝑖=1

𝑘∑︁
𝑙=1

𝐷𝑡(𝑖, 𝑙)(I(𝑦𝑖 ̸= ℎ𝑡(𝑥𝑖)) + I(𝑙 = ℎ𝑡(𝑥𝑖)))

4. Assign the weight

𝛼 =
1

2
log(

1 − 𝜖𝑡
𝜖𝑡

) + log(𝐾 − 1)

5. Update the weights

𝑊𝑡+1(𝑖, 𝑙) = 𝑊𝑡(𝑖, 𝑙) exp(𝛼𝑡[I(𝑦𝑖 ̸= ℎ𝑡(𝑥𝑖)) + I(𝑙 = ℎ𝑡(𝑥𝑖))])

6. Normalize the new weights

7. The final classifier is

𝐻(𝑥) = arg max
𝑙∈𝑌

𝑇∑︁
𝑡=1

𝛼𝑡I(𝑙 ∈ ℎ𝑡(𝑥))
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2.1.4 Other Boosting Algorithms

L2Boosting

L2Boosting [5] utilizes a squared error loss function which on the 𝑡th boosting iteration

minimizes

Loss(𝑦,𝐻𝑡(𝑥)) = (𝑦𝑖 −𝐻𝑡−1(𝑥𝑖) − ℎ(𝑥𝑖; 𝜃𝑡))
2

Buhlmann and Yu (2003) showed that when boosting with squared error loss can

achieve identical results to Least Angle Regression (LARS) which is useful for variable

selection.

LogitBoost

The problem with Adaboost and utilizing an exponential loss function is that it puts

a significant amount of weight on the misclassified or ’difficult’ examples. This causes

the algorithm to be very sensitive to outliers (mislabeled training examples). In ad-

dition to this sensitivity, since the exponential loss function is not the logarithm of

any density functions, it is difficult to extract corresponding probability estimates

from the value returned by 𝐻(𝑥). A less harsh alternative is logloss which linearly

concentrates on mistakes rather than exponentially. Such a boosting algorithm in-

corporating log loss seeks to minimize

𝐿𝑡(ℎ) =
𝑛∑︁

𝑖=1

log(1 + exp(−2𝑦𝑖(𝐻𝑡(𝑥𝑖) + ℎ(𝑥𝑖))))

We can recover the probability estimates as

𝑝(𝑦 = 1 | 𝑥) =
1

1 + 𝑒−2ℎ(𝑥)

The resulting binary classification boosting algorithm developed by Friedman et al.

[11] is shown below.
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Algorithm 4 LogitBoost

1. Initialize 𝑊𝑖 = 1
𝑛

and 𝜖𝑖 = 1
2

2. At boosting stage 𝑡, compute the weights 𝑊𝑖 = 𝜖𝑖(1 − 𝜖𝑖)

3. Find a base learner such that

ℎ(𝑥; 𝜃𝑡) = arg min
ℎ

=
𝑁∑︁
𝑖=1

𝑤𝑖

(︂
𝑦𝑖 − 𝜋𝑖

𝜋𝑖(1 − 𝜋𝑖)
− ℎ(𝑥𝑖; 𝜃𝑡)

)︂

4. Add to the ensemble our new base learner

𝐻𝑡(𝑥) = 𝐻𝑡−1(𝑥) +
1

2
ℎ(𝑥; 𝜃𝑡)

5. Update the error to get

𝜋𝑖 = 1/(1 + exp(−2𝐻𝑡(𝑥𝑖)))

Gradient Boosting

As we can see from the above versions of boosting, a unique boosting algorithm can

be derived for each loss function and its performance can vary depending on which

base learner. We can derive a generic version of boosting called gradient boosting

[12]. In this approach, we seek to find the function that minimizes the loss function

written as

ℎ̂ = arg min
ℎ

𝐿(ℎ)

where ℎ is our function. We can view this as a gradient descent in the function space.

We perform a stagewise gradient descent in a stagewise fashion to get the gradient 𝑔𝑡

𝑔𝑡(𝑥𝑖) =

[︂
𝜕𝐿(𝑦𝑖, ℎ(𝑥𝑖))

𝜕ℎ(𝑥𝑖)

]︂
ℎ=𝐻𝑡−1

We then update our ensemble to

𝐻𝑡 = 𝐻𝑡−1 − 𝜌𝑡𝑔𝑡
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where 𝜌𝑡 is the stepsize of the functional gradient descent. So far, this approach is

not particularly useful because the function itself will most likely overfit the training

data. We would like to find a base learner that can approximate the negative gradient

with the following function

𝜃𝑡 = arg min
𝑡

𝑁∑︁
𝑖=1

(−𝑔𝑡(𝑥𝑖) − ℎ(𝑥𝑖; 𝜃𝑡))
2

We can write the full algorithm seen below. Common versions of gradient boosting

Algorithm 5 Gradient Boosting

1. Initialize ℎ(𝑥; 𝜃0) as 𝜃0 = arg min𝜃

∑︀𝑛
𝑖=1 𝐿(𝑦𝑖, ℎ(𝑥𝑖; 𝜃))

2. For boosting stage 𝑡, compute the gradient 𝑔𝑡(𝑥𝑖)

3. Find the base learner ℎ(𝑥; 𝜃𝑡) that minimizes
∑︀𝑛

𝑖=1(𝑔𝑡(𝑥𝑖) − ℎ(𝑥𝑖; 𝜃𝑡))
2

4. Now add the learner to the new ensembler 𝐻𝑡(𝑥) = 𝐻𝑡−1(𝑥) + 𝛼𝑡ℎ(𝑥𝑖; 𝜃𝑡)

utilizes decision trees as the base learner.

2.2 Max Margin

Early work by Freund and Schapire [10] sought to prove an upper bound on general-

ization error in order to develop an understanding for the performance of boosting.

Initial upper bounds were computed as

𝑃 (𝐻(𝑥) ̸= 𝑦) + 𝑂

(︃√︂
𝑇𝑑

𝑛

)︃

where 𝑃 is the empirical probability from the training set, 𝑇 is the number of boost-

ing iterations, 𝑑 is the VC-dimension, and 𝑛 is the size of the training set. The

surprising finding during early experiments was that boosting did not tend to overfit

the data despite the number of boosting iterations run on the training dataset with

𝑇 acting as an upper bound. Typically, as hypotheses get more and more complex,
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the generalization commonly degrades due to overfitting. Furthermore, not only did

it not overfit the data, even after the training error reached zero, the generalization

error continued to decrease with each subsequent iterations. There was significant

interest behind understanding why such a complex hypothesis yielded extremely low

error rates. Based on the work done by Bartlett [2] and Schapire et al. [29], in order

to understand why boosting was resistant to overfitting, the authors did not simply

examine how boosting effected the training error (the number of misclassified exam-

ples), but rather examined the confidence of the classification. In their work, they

modeled the confidence of classification as the margin from the decision boundary.

The margin of an example (𝑥𝑖, 𝑦𝑖) can be written as

margin(𝑥, 𝑦) =
𝑦𝑖
∑︀𝑇

𝑡=1 𝛼𝑡ℎ(𝑥𝑖; 𝜃𝑡)∑︀𝑇
𝑡=1 𝛼𝑡

Notice that the margin is in the range [−1,+1] and is positive when correctly classified

and negative when misclassified. The margin illustrates the level of certainty of

confidence of the prediction. For instance, if all classifiers predict 𝑥𝑖 as the same

label, then the margin (or confidence) is 1. Note that this margin is different from

the geometric margin utilized in SVMs which we will describe later. Their work proved

an upper bound for the generalization error in terms of the margin and independent

of 𝑇 .

𝑃 (margin(𝑥, 𝑦) ≤ 𝜌) + 𝑂

(︃√︃
𝑑

𝑛𝜌2

)︃
(2.1)

where 𝜌 > 0 is the margin threshold. Since boosting is aggressive in concentrating on

reducing the margin of the ’hard to classify’ examples, it is able to continue to reduce

the generalization error after the training error is 0.

Margin distribution graphs are helpful tools in understanding how the distribution

of margins changes over each boosting iteration. Figure 2-4 is an example of the

margin distribution graph at the beginning of boosting while Figure 2-5 represents the

margin distribution graph after a few iterations. Notice that overall the distribution

decreases and moves towards the right since boosting focuses on the examples with
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Figure 2-4: Initial margin distribution for the first iteration of the boosting algorithm
on an artificial dataset

small margins.

2.2.1 Relation to Support Vector Machines

The margin theory developed by Vapnik [37] highlights a strong theoretical connection

between boosting and support-vector machines. In analyzing Adaboost’s generaliza-

tion error in Equation 2.1, a way to approach the analysis is to minimize the bound.

While Adaboost does not explicitly try to maximize the minimum margin, it does

generally try to increase the margins to be as large as possible, so analyzing the

maximization of the minimal margin is an approximation of Adaboost. Denote the

importance and stumps vector as 𝛼 = [𝛼1, · · · , 𝛼𝑇 ] and h = [ℎ(𝑥; 𝜃1), · · ·ℎ(𝑥; 𝜃𝑇 )].

The maximization of the minimal margin problem can be written as

max
𝛼

min
𝑖

(𝛼 · h(𝑥𝑖))𝑦𝑖
‖𝛼‖‖h(𝑥𝑖)‖

In the boosting case, the norms in the denominator are defined by the the L1

norm for ‖𝛼‖1 =
∑︀

𝑡 |𝛼𝑡| and the L∞ norm for ‖h(𝑥𝑖)‖∞ = max𝑡 h(𝑥; 𝜃𝑡). In rela-

tion to SVMs whose explicit goal is to maximize the minimal geometric margin, both

norms are the L2 norm ‖𝛼‖2 =
√︀∑︀

𝑡 𝛼
2
𝑡 and ‖h(𝑥𝑖)‖2 =

√︀∑︀
𝑡 h(𝑥; 𝜃𝑡)2.
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Figure 2-5: Final margin distribution for the 50th iteration of the boosting algorithm
on an artificial dataset

The differences in norm have only a slight effect in low-dimensional space; however,

in high-dimensional spaces, the margins can be drastically different. The difference

can be exacerbated when 𝛼 is very sparse which would cause Adaboost to have a

much larger margin than SVM. A reason for boosting’s resistance to overfitting is

that the L1 norm ignores the irrelevant features.

2.3 Noise Identification

In order to gain an understanding the behavior of boosting methods on noisy data

points, a method must be developed for identifying these noisy points on real-world

data. Unfortunately, methodology for identifying noise still remain very rudimentary;

otherwise, every machine learning problem would begin with filtering out all of the

noisy data points from every dataset. Separating the signal from the noise in itself

is a hard problem and has strong effects on machine learning algorithms’ ability to

generalize [4].

The source of labeling errors can come in a variety of forms from subjective evalu-

ation, data entry error, or simply inadequate information. For example, subjectivity
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can arise when a medical practitioner is attempting to classify disease severity. An-

other example in which there may be inadequate information is if a human records

an image pixel based on color rather than the numeric input used by the algorithm

to classify the data.

Wilson [39] first used the idea of noise filtering in which noisy points were identified

to eliminate and improve classification performance. Wilson employed a 𝑘 nearest

neighbor classifier to filter the dataset and fed the correctly classified points into a

1-nearest neighbor classifier. Tomek [34] extended Wilson’s algorithm for varying

levels of 𝑘. Much further work was done on instance-based selection for the purpose

of exemplar-based learning algorithms.

The danger of automatically flagging points that are difficult to correctly classify as

noisy data is that they could be an exception to the rule rather than a noisy data point.

An important question is to determine a method for differentiating between exceptions

and noise. Guyon et al. [16] developed an information criterion to determine how

typical a data point was, but since it was an on-line algorithm, it was sensitive

to ordering. Srinivasan et al. [30] utilized an information theory-based method to

separate exceptions and noise in the context of logical theory.

Oka et al. [25] developed methodology for learning generalizations and excep-

tions to the rule separately by separately noting which data points were correctly

and incorrectly classified in the neighborhood around each training example. Their

algorithm for differentiating the noise from the exceptions rested upon a user input

which made sure the classification rate passed the threshold.

Gamberger et al. [14] developed a noise identification algorithm that focused first

on inconsistent data points, that is points with both labelings present for the same

feature values. After removing the inconsistent data, they transformed the features

into binary values and removed features that most significantly reduced the number

of literals needed to classify the data.

While many of the previous works have found noise detection methods for cer-

tain contexts in order to improve generalization and prediction, this does not fall in

accordance with this study. Our goals are to identify noisy points to examine how
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boosting handles these points in a volumetric sense. To this end, we seek to employ

the general framework developed by Brodley et al. [4]. In their work, they use a

cross-validation procedure in which each fold gets to vote on the left out fold and

compares how difficult it is to classify.

2.3.1 Noise Filtering Algorithms

The general framework for the noise filtering algorithms we will use is as seen below.

Algorithm 6 Noise Filtering

1. Divide the dataset into 𝑛 folds

2. For each fold, train the 𝑚 classifiers on the remaining 𝑛− 1 folds

3. The 𝑚 classifiers are used to label each data point in the 𝑛th fold.

4. A point is called misclassified by a classifier, if a classifier assigns the point a
label different from its given label.

5. A metric is used to determine how heavily misclassified a point to determine
whether to consider it noise.

Single Algorithm Filters

There are two types of single algorithm filters. One uses the same algorithm for both

filtering and classifying. An example of this idea is fitting a dataset in regression

analysis, removing the datapoints, and re-fitting on the modified dataset. Another

common example of this approach is employed by John [18] in which a decision tree

is created and subsequently pruned. Once you remove the corresponding pruned

training points, then you can re-fit the data to a decision tree. This differs slightly

with the framework we will follow in that John’s approach runs multiple iterations

rather than utilizing cross-validation.

The other approach in single algorithm filters is to use one algorithm for filtering

and another one for classifying. The reason one might choose this approach over using

the same algorithm for both is that some algorithms act as better filters while others

may be better at classification.
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Ensemble Algorithm Filters

Ensemble classifier algorithms combines the labels of multiple base (or weak) learners

to determine a label. Boosting is an example of a ensemble classifier. There are two

types of ensemble filters. One approach is the majority vote ensemble filter. The

majority vote ensemble filter trains the ensemble of base learners on the 𝑛− 1 folds,

then labels a point in the 𝑛th fold as mislabeled if a proportion 𝑥 of the 𝑚 base learners

incorrectly classifies the training point. The other approach for ensemble filtering is

consensus filtering in which a point is labeled as noise if none of the base learners can

correctly classify the data point. Consensus filtering is the more conservative of the

two approaches and preferrable if your approach is averse to getting false positives.

On the other hand, consensus ensemble filtering retains many false negatives.

Filter Errors

When identifying noisy training examples, two types of noise errors will often result

for any imperfect filter. The first type are false positives where correctly labeled points

are identified as noisy points in the dataset (the yellow discarded portion in Figure

2-6). The second type is when a mislabeled (noisy) point is not correctly filtered out

of the dataset and identified (the blue mislabeled portion in Figure 2-6). In order

to appropriately choose what type of enesemble filtering algorithm to utilize, it is

important to develop an understanding of the relative errors of the two approaches.

In the majority vote ensemble filter case, the event of incorrectly marking a non-

noisy data point as noisy occurs when more than half of the 𝑚 base learners fail to

correctly classify the data point. Define 𝑃 (Discarded 𝑖) as the probability for a given

classifier 𝑖 to incorrectly classify a point. Assume for simplicity that all classifiers have

the same discard probability and assume that errors on data points are independent,

we can express the overall probability that an majority vote ensemble filter will discard

a good training example as

𝑃 (Discarded) =
𝑚∑︁

𝑗>𝑚/2

𝑃 (Discarded𝑖)
𝑗(1 − 𝑃 (Discarded𝑖))

𝑚−𝑗

(︂
𝑚

𝑗

)︂
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Figure 2-6: A schematic of discarded vs mislabeled points for a noise identification
filter

where each term in the sum represents the probability of 𝑗 errors occuring among

the 𝑚 base learners. If the probability of each classifier making such an error is

< 0.5, then the majority vote ensemble filter is expected to perform better than a

single-algorithm filter using the same base learner.

Now we examine the probability of mislabeling a noisy instance as a non-noisy

one (the blue circle in the figure). Once again this occurs when more than half of

the base learners classifies the noisy point as the incorrect class. Similar to before,

we define 𝑃 (Mislabeled𝑖) as the probability for a given classifier 𝑖 to mislabel a noisy

point. Once again, we make the same assumptions as before regarding independent

errors and equal error probability for each base learner. The probability under these

assumptions for a given noisy data point is given as

𝑃 (Mislabeled) =
𝑚∑︁

𝑗>𝑚/2

𝑃 (Mislabeled𝑖)
𝑗(1 − 𝑃 (Mislabeled𝑖))

𝑚−𝑗

(︂
𝑚

𝑗

)︂
Similar to before, if the probability of each base learner making an error is < 0.5,

then it is expected to make fewer errors than the single-algorithm with the same base

learner.

For consensus ensemble filters, we use the same notation as we did for majority
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vote ensemble filters. Then, 𝑃 (Discarded) can be written as

𝑃 (Discarded) = 𝑃 (Discarded1)𝑃 (Discarded2 | Discarded1) · · ·

If we include the assumptions from before, then we can rewrite the probabilities as a

product of this form

𝑃 (Discarded) =
𝑚∏︁
𝑖=1

𝑃 (Discarded𝑖)

When the independence assumption holds, the probability of error is less than that

of a single-algorithm filter.

Once again we now wish to compute the probability of a consensus ensemble filter

mislabeling a noisy example as non-noisy. This event occurs when one or more of the

base learners correctly classifies the example. We can write this probability as

𝑃 (Discarded) = 1 − (1 − 𝑃 (Discarded1))(1 − 𝑃 (Discarded2 | ¯Discarded1)) · · ·

When the errors are independent, we can write them as

𝑃 (Discarded) = 1 −
𝑚∏︁
𝑖=1

(1 − 𝑃 (Discarded𝑖))

In contrast to the other cases, a single algorithm filter would be expected to make

fewer mistakes than an consensus ensemble one with the same base learner.
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Chapter 3

Methodology and Experiments

3.1 Dataset

The experiments are conducted on the commonly used Wisconsin Diagnostic Breast

Cancer(WDBC) machine learning dataset publicly available at the University of Cal-

ifornia Irvine repository (http://archive.ics.uci.edu/ml/). The breast cancer dataset

was first collected and published in 1995 by Street et al. [31]. The dataset contains

699 total examples with 458 benign examples and 241 malignant examples. The

dataset contains 10 features with values ranging from 1 - 10 containing information

such as clump thickness, uniformity of cell size, etc. There are 16 missing values.

Missing values were replaced with the mean value of the feature. The features are

computed from a digitized image of a fine needle aspirate (FNA) of breast mass as

can be seen in Figure 3-1. The features describe the properties of the cell nuclei. All

features contain 4 significant digits.

3.2 Noise Identification Method

In order to properly evaluate how boosting affects noisy points on real data, it is

necessary to develop a noise identification algorithm which is able to accurately de-

termine which points are noisy. It is important that both false positives and false

negatives are equally minimized. For that reason, a majority vote ensemble filter was
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Figure 3-1: An example of a fine needle aspirate image used for the Wisconsin Diag-
nostic Breast Cancer dataset

chosen using Adaboost run on a small number of iterations as the filter.

Algorithm 7 Majority Vote Ensemble Filter (Adapted from Brodley et al)

1. Randomly shuffle and divide the dataset into 𝑘 folds.

2. For each fold, run Adaboost on the remaining 𝑘− 1 folds using 𝑚 base learners
(where 𝑚 is relatively small).

3. For a given training point 𝑖, if more than a fraction 𝑝 of the base learners
misclassify it, label it as a noisy point.

3.3 Decision Volume

Define decision volume as the volume of the region around a given point 𝑝 where all

points in the region have the same label. The region must be continuous (ie you can

connect any two points in the region without having to cross a point with a different

label). This quantity is of interest because it may serve as a good metric for noise

identification in addition to providing insight into the mechanics behind Adaboost. It

is worth noting that it is not uncommon for the decision volume value to be infinite, so

for practical computations the volume is restricted to be within the 𝑑- dimensional hy-

perrectangle that exactly circumscribes the dataset (ie no hyperrectangle with smaller

volume could contain the entire dataset). Even when restricting the experiments to

Discrete Adaboost, decision volume becomes computationally challenging to compute
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once the number of points and dimensions scales, so an approximation of decision vol-

ume will be used.

Algorithm 8 Approximate Decision Volume Algorithm for Discrete Adaboost

1. Define 𝑀𝐼𝑁 [𝑑] and 𝑀𝐴𝑋[𝑑] as the minimum and maximum value respectively
of the dataset along the 𝑑th dimension

2. For each dimension 𝑑, select all decision stumps that partition the space along
𝑑.

3. Sort the selected stumps.

4. Search for the closest stumps before and after each point with a different label.

5. If there is no closest stump before or after the point, replace with 𝑀𝐼𝑁 [𝑑] − 𝜖
and 𝑀𝐴𝑋[𝑑] + 𝜖 where 𝜖 = 0.01.

6. Update the volume for each point given the length as the difference between
the two stumps

Also, aother application of interest is the usage of decision volume as a proxy for

noise identification.

Algorithm 9 Decision Volume Noise Filter

1. Compute the decision volume for each point

2. Take the fraction 𝑝 with the smallest decision volumes as noisy.

3.4 Cell Volume

Another interesting volume-based metric is how Adaboost affects the cell volume

(defined as the volume of the region bounded by the base learners surrounding a

given point) surrounding noisy points in contrast with the non-noisy points. This

insight into how Adaboost affects the cell volumes of noisy points with each successive

boosting iteration could lead to a unique perspective of the underlying mechanism

that allows Adaboost to be resistant to overfitting, an integral part of boosting’s

popularity and wide applications. Computing cell volume for general base learners is
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difficult and computationally intensive so for these experiments, Adaboost is restricted

to the class of decision stumps as a base learner.

Algorithm 10 Cell Volume Algorithm for Discrete Adaboost (with base learner of
decision stumps)

1. Define 𝑀𝐼𝑁 [𝑑] and 𝑀𝐴𝑋[𝑑] as the minimum and maximum value respectively
of the dataset along the 𝑑th dimension

2. For each dimension 𝑑, select all decision stumps that partition the space along
𝑑.

3. Sort the selected stumps.

4. Search for the closest stumps before and after each point.

5. If there is no closest stump before or after the point, replace with 𝑀𝐼𝑁 [𝑑] − 𝜖
and 𝑀𝐴𝑋[𝑑] + 𝜖 where 𝜖 = 0.01.

6. Update the volume for each point given the length as the difference between
the two stumps

3.5 Margin Distribution

In order to compare the volume-based approach to resistance to overfitting, decision

and cell volume are compared the the results with the classical margin maximization

explanation for boosting’s resistance to overfitting.

Algorithm 11 Margin

1. For every point 𝑥𝑖, compute ∑︁
𝑡

𝛼𝑡𝑦𝑖ℎ(𝑥𝑖; 𝜃𝑡)

2. Normalize by
∑︀

𝑡 𝛼𝑡
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Chapter 4

Results and Discussion

This thesis examined how the noise filter performs as a function of the number of

iterations used in the Adaboost majority vote ensemble filter as well as the threshold

of votes used to determine as noisy. I set the number of folds 𝐾 = 3 and thresholds

= {0.5, 0.6, 0.7, 0.8, 0.9}. The maximum number of estimators allowed was 50. The

results are shown in Figure 4-1. From the figure, the highly noisy points disappear if

the filter has 7 estimators. For a noise threshold of 0.5, the fraction of noisy points

stabilizes around 0.45.

Next, experiments were run to understand the relationship between cell volume

and Adaboost. The majority vote ensemble filter was used to identify noise. I set

the number of folds 𝐾 = 3, the threshold 𝜖 = 0.5, and the number of estimators in

the ensemble to 4. The experiment compared the cell volume and the training error

for 300 iterations of the boosting algorithm. The noise filter classified 2.4% of the

data points as noisy. The results are shown in Figure 4-2. Note that the boosting

algorithm initially reduces the cell volume of the ’easy to classify’ non- noisy points

first in the first 240 iterations. Then, once the training error stabilizes, it focuses on

reducing the cell volume of the noisy data points.

Next, experiments were run on decision volume, and how it differs from that of the

cell volume. Once again the majority vote ensemble was used for noise identification.

The noise filter parameters were set the same as before. The decision volume and

the training error over 50 iterations of the boosting algorithm were investigated. The
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Figure 4-1: The fraction of noisy points in the dataset from the majority vote ensemble
filter with respect to the number of iterations in boosting and noise threshold.
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Figure 4-2: The log cell volume with each successive iteration of boosting for noisy
and non-noisy points. Below is the training error for each iteration of boosting.
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noise filter selected 2.28% of the points as noisy. The results of the experiment are

shown in Figure 4-3. Note that the boosting algorithm immediately cuts the decision

volume for the non-noisy points within the first few iterations. However, once this

occurs its begins to focus on the noisy points until the mean decision volumes for noisy

points are significantly less than that of non -noisy ones. The difference in volume

size stabilizes such that the non-noisy point volumes are 2-3 times the size of noisy

ones. This agrees with our understanding of boosting as it should be incentivized to

minimize the decision volume for the noisy points because the point is the result of a

labeling error. The point at which it begins to focus on the noisy points is around the

4th iteration, which coincides with the number of base learners in the noise filter used.

This is because in prior iterations a large portion of the points were all candidates

for being noisy points, so the decision volume of the ones Adaboost could correctly

classify were significantly smaller until it reached the 4th iteration where it hones in

on the criteria for mislabeled points, and seeks to classify them correctly.

The margin distributions of the points are computed to understand how the mar-

gins change over iterations in this context. Again, the same noise filter and parameter

settings are used as before. As shown in Figure 4-4, in this context the margins for

noisy points behave in a way as described in previous boosting margin experiments

in the literature.

From the earlier experiments, it has been shown that noisy data points tend

to have smaller decision volumes than their non-noisy counterparts. This leads to

experimenting with the usage of decision volume as a proxy for noise identification.

In order to entertain this possibility, the overlap of noisy points chosen by the ensemble

filter and the decision volume based approach is computed. Note that it is difficult

to identify the true noisy points. As before, the ensemble filter is set to have 𝐾 = 3,

and number of estimators is set to 4. In this experiment, the results are presented

for varying thresholds {0.5, 0.6, 0.7, 0.8, 0.9}. Noisy points for the decision volume

approach are chosen by computing the bottom fraction of decision volumes. This

fraction is based on the fraction of noisy points chosen in the equivalent ensemble filter

for a given threshold. The results are shown in Figure 4-5. Note that the behavior
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Figure 4-3: The mean decision volumes with each successive iteration of boosting for
noisy and non-noisy points. On the bottom is the training error for each iteration of
boosting.
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Figure 4-4: The margin distribution (expressed as a cumulative distribution) for noisy
and non-noisy points different iterations of boosting.
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Figure 4-5: The fraction of overlap between the decision volume filter and ensemble
filter for a varying number of iterations of the decision volume filter and varying
thresholds for the ensemble filter

for the first few iterations is irregular since all decision volumes within the first few

iterations are roughly uniform. In addition, for high thresholds, there is minimal

overlap since very few points meet such a high threshold. After a few iterations the

overlap of noisy points stabilizes around 0.5, which indicates that a decision volume

filter is a viable alternative to identifying noisy points.
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Chapter 5

Contributions

I have demonstrated that Adaboost seeks to minimize the decision volume of noisy

points with each additional iteration in comparison to non-noisy points. This min-

imization of the decision volume of noisy points appears to be a consequence of

boosting’s ability to generalize well and not overfit the data. The reduction of the

decision volume surrounding noisy points prevents the model from suffering from the

effects of overfitting as the decision volume can be thought of as the points ’region of

influence.’

I have also found that Adaboost does not seem to particularly affect the cell

volumes of the noisy points but instead decreases the cell volume with each iteration

in a uniform manner. This implies that Adaboost does not simply attempt to place

stumps near noisy points to reduce the cell volume, but as can be seen from the

derivation attempts to reduce the decision volume by minimizing the exponential

loss.

This volume-based understanding of Adaboost provide an interesting perspective

of Adaboost. The margin-based explanation of Adaboost’s resistance to overfitting

uses a notion of margin that incorporates the ’distance’ of all of the weak learners.

Cell volume only accounts for the weak learners immediately surrounding it without

accounting for labeling or weights, which is a more local approach compared to the

margin’s more global view of Adaboost. Decision volume accounts for the closest de-

cision boundary in a similarly local manner to cell volume, but the decision boundary
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is a result of the weighting of all of the weak learners, so it combines both the local

and global perspective of the two.

Finally, the finding that decision volume could be used as a noise identification

procedure requires further research. The application of this procedure to different

datasets especially those where the noisy labels are known or artificially created would

provide for an interesting study. If decision volume is a viable noise identification

metric, its performance can be used in comparison with other noise identification

metrics and used as a filtering method to make a dataset friendlier to algorithms that

are not as resistant to overfitting.
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